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I n  this paper the linear stability of the hypersonic boundary layer is considered in the 
local-parallel approximation. It is assumed that the Prandtl-number < r < 1 and 
the viscosity-temperature law is a power function: p/p, = (T/T,)". The asymptotic 
theory in the limit M ,  +cc is developed. 

Smith & Brown found for the Blasius base flow and Balsa & Goldstein for the 
mixing layer that, in this limit, the disturbances of the vorticity mode are located in 
the thin region between the boundary layer and the external flow. The gas model 
with = 1,  w = 1 was exploited in these studies. Here it is demonstrated that the 
vorticity mode also exists for gas with 4 < r < 1,  w < 1, but its structure and 
characteristics are considerably different. The nomenclature is discussed, i.e. what an 
acoustic mode and a vorticity mode are. The numerical solution of the inviscid 
instability problem for the vorticity mode is obtained for helium and compared with 
the solution of the complete Rayleigh equation at finite Mach numbers. 

The limit M ,  +oo in the local-parallel approximation for the Blasius base flow is 
considered so as to understand the viscous structure of the vorticity mode. The 
viscous stability problem for the vorticity mode is formulated under these 
assumptions. The problem contains only a single similarity parameter which is a 
function of the Mach and Reynolds numbers, the temperature factor and wave 
inclination angle. This problem is numerically solved for helium. The universal upper 
branch of the neutral curve is obtained as a result. The asymptotic results are 
compared with the numerical solutions of the complete problem. 

1. Introduction 
Early investigations of compressible boundary-layer stability include those of Lees 

& Lin (1946) and Lees (1947). An important contribution was made by Mack (1969, 
1987), who thoroughly documented inviscid and viscous results of numerical studies. 
The present state of the problem is discussed by Gaponov & Maslov (1980) and 
Zhigulev & Tumin (1987). 

Recently, there has been much interest in the boundary-layer stability a t  large 
values of the Mach number, provoked by recent plans to construct new trans- 
atmospheric aircraft. The design of this new aircraft differs from previous ones, in 
that more emphasis has to be placed on the very high speed in the dense layers of 
atmosphere. For this aircraft the most important problem is the heat transfer and 
consequently the instability, transition and turbulence in the high-Mach-number 
boundary layer are involved. The asymptotic studies of these phenomena in the limit 
M ,  -too will most likely enable the development of simple practical models suitable 
for practical use. 
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Some very significant progress has recently been made in these studies. An 
asymptotic triple-deck theory for the viscous-mode waves at  sufficient angle to the 
free-stream direction was developed by Smith (1989). The interaction of these waves 
with the shock was studied by Cowley & Hall (1990). The modification of the triple- 
deck theory for a strong surface cooling was investigated by Seddougui, Bowles & 
Smith (1991). 

The asymptotic theory of the inviscid-mode instability has also been intensively 
developed. Cowley & Hall (1990) and Smith & Brown (1990) introduced an 
asymptotic description of the acoustic modes, and Goldstein & Wundrow (1990) 
studied the nonlinear problem for these modes. Certain aspects of theoretical 
research into hypersonic flow stability in boundary layers, shock layers and nozzle 
flows were described by Brown et al. (1991). 

We think that the most noteworthy finding was the inviscid vorticity-mode 
asymptotic description obtained by Smith & Brown (1990) for the Blasius base flow 
and by Balsa & Goldstein (1990) for the mixing layer. This finding opens a new region 
for further investigations and may even be employed in practical applications. The 
gas model with constant heat capacity was used in these papers. The Prandtl number 
was defined as unity (u = 1)  and a linear viscosity-temperature law p/pm = TIT, was 
chosen. 

A very important factor in the asymptotic theory of the stability a t  M, +co is the 
choice of the gas model. In  this paper the asymptotic theory of hypersonic boundary- 
layer stability is developed for gas with & < CT < 1, p/pm = (T/T,)", w < 1. Helium 
wind tunnels are the only devices in which very high Mach numbers may be obtained 
under ideal gas flow. Our gas model is quite suitable for experiments in a helium wind 
tunnel a t  large values of Mach numbers. The description of the limit M ,  +cc for this 
model is proved to  be simpler (asymptotic expansions do not contain logarithmic 
terms). The case with w = 1 (Balsa & Goldstein ; Smith & Brown) is singular for this 
theory. Therefore, the mathematical statement and physical results are considerably 
different. 

We will further see that the results of the asymptotic theory are very sensitive to 
the choice of gas model : which part of the asymptotic results for the vorticity mode 
is stable and which is dependent? To answer this question, we perform the 
parametric study of the limits for different u, w ,  although most of the numerical 
results are obtained for helium (cr = i, w = 0.647). While revising this paper we 
became familiar with the papers of Blackaby, Cowley & Hall (1990, 1993) where the 
asymptotic theory for a gas using Sutherland's viscosity law and CT= 1 was 
developed. The structure of their base flow is similar to those considered in our paper; 
therefore, while there is some overlap with our work, there are also many differences. 
We have studied the viscous counterpart of the inviscid vorticity mode, while 
Blackaby et al. (1990, 1993) have obtained the inviscid vorticity mode in the strong- 
interaction region. The parametric study a t  different u, o allowed us to discern the 
importance of the long-wave-limit similarity parameter 5 = (1 - 2 w ) / (  1 - u( 1 - w ) /  
(1  + w ) )  and to demonstrate that the asymptotic form depends on whether s < 4 
or s > 4 (see Grubin & Trigub 1993). 

In  this paper we also formulate and solve the problem for the viscous vorticity 
mode in the local-parallel approximation for the non-interactive Blasius base flow. 
We studied the problem with the aim of demonstrating the existence of the viscous 
counterpart of the inviscid vorticity mode and to understand its structure. Using the 
local-parallel approximation most numerical and practical results a t  high Mach 
numbers were obtained. Therefore, the asymptotic study of the problem in the local- 
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parallel approximation is of independent significance. Though using the local-parallel 
approximation, we consider the viscous vorticity-mode analysis as an important 
building block for hypersonic boundary-layer theory. 

The problem formulated in this way contains only a single similarity parameter 
which is the function of the Mach and Reynolds numbers, the temperature factor and 
wave inclination angle. The problem is solved numerically for helium. The universal 
upper branch of the neutral curve and the line of maximum amplification rate 
are obtained. It is possible to recalculate stability characteristics at  various 
Reynolds and Mach numbers, temperature factors and wave angles. The results 
are in a good agreement with the numerical results for the complete problem at 
M ,  = 20. 

The plan of the paper is as follows. The limit M ,  +cc for the boundary layer on 
a flat plate far enough from the leading edge to eliminate all interaction effects is 
considered in $2. The asymptotic expansions of the velocity and temperature profiles 
in the boundary and transition layers are obtained. The transition layer is the thin 
region between the boundary layer and the external flow. It is shown that the 
generalized inflexion point is situated in the transition layer if r > 4. The profiles in 
the transition layer were numerically obtained for helium. The influence of the 
temperature factor on the profiles is investigated and discussed. 

The compressible boundary-layer linear stability problem in the local-parallel 
approximation is briefly described in $3, using the operator form of the equations. 
This part does not contain new results but provides important background and 
introduces most of the notation. 

The inviscid instability problem for the vorticity mode a t  M ,  +oo is formulated in 
$4. The definition of the vorticity mode is considered in detail. The phase velocity 
and amplification rate as functions of the wavenumber for the vorticity mode are 
numerically obtained for helium. A comparison between the results for the neutral 
inflexional modes at  finite M ,  and for the asymptotic vorticity mode is also 
presented. 

The viscous instability problem for the vorticity mode at M,+co in the local- 
parallel approximation is formulated in $5. The problem is solved numerically with 
the aid of the spectral method. The universal upper branch of the neutral curve 
is obtained and compared with the numerical results for the complete problem. 
The main features of the vorticity mode in the limit M,+clc, are assigned and 
discussed. 

2. The velocity and temperature profiles in the non-interactive boundary 
layer on a flat plate as M ,  +GO 

Consider the origin of rectangular coordinates (gd,  gd, xd) a t  the leading edge of t,he 
plate, where the axis is directed along the plate, Yd is normal to plate and zd is the 
transverse axis along the edge. The subscript d denotes dimensional variables and m 
the free-stream values. The plate is in a flow of gas with constant Prandtl number IT 

and y = C,/C,,. The viscosity-temperature law is ,ud/p, = (T,/T,)", where w < 1. 
The lengthscale L, = xd/R, where Reynolds number R = (u, p, xd/,uU,)fr, is of the 
same order as the boundary-layer thickness for M ,  = O( 1). 

We study the flow near the plate very far from the leading edge where interaction 
effects do not influence the leading-order approximation (the correlation between R 
and M ,  in this region will be considered further below). The base flow there is 
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described by the similarity solution of the boundary-layer equations (Hayes & 
Probstein 1959) : 

(Nf”)’ +J” = 0, 

( 1 , ’ ~ )  (NT’)’ +fT’ + (2/e) Nf’” = 0,  

0 < 7 <a, f(0) =f’(0) = 0, f ’ ( c o )  = 1 ,  T(0)  = T,, T ( m )  = 1 ,  

(2.1) 

where 

ua is the streamwise component of velocity, and primes denote differentiation. 
Freeman & Lam (1959) showed that the non-interactive boundary layer divides 

into two layers as e+0.  In  the inner (boundary) layer (subscript b) of thickness 
y - O ( C - - ( ~ + ~ ) / ~ )  gas is strongly heated and velocity varies from zero to its value in the 
free stream : 

where 

The boundary point rh = co is singular. The asymptotic expansions of functions in its 
neighbourhood are 

- 

f h  = 6 + 1 + o( 6’)) > 

1 l + w  6 = rb-CO, A, = -~ 
C1-U’  

There are three arbitrary constants, Go, C,, G,, which can be determined from 
matching (2.3) and the solution of (2.2). All subsequent terms in the expansions (2.3) 
include only these arbitrary constants. 

The large number of terms in (2.3) have been used in a numerical analysis of 
perturbations in the inner layer (Grubin & Trigub 1993). The subsequent structure 
of series ( 2 . 3 )  and the method of calculation are described in Appendix A. 

It has proved helpful to use the Dorodnitsyn-Howart variable 7 in the stability 
calculations. However, a more clear representation is given with the coordinate y as 
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an independent variable. We will use both these representations and show the 
connection between them. An interesting feature of the solution of (2.2) is that the 
edge of the layer (yb+co) is situated a t  a finite value of ordinate yb 

00 

Ybm = d2 r Tbd?lb' 

As yb+m 

Ybm-Y- 
g = e-('+o)/z 

It is the solution of (2.2) that is important for most practical applications, i.e. when 
only friction, heat transfer or other integral characteristics of a boundary layer are 
required, it gives the main approximation. However (as shown later), in the 
hypersonic stability theory, profiles in the outer transition layer (subscript t )  have 
a major role. This thin layer (S,/Sb = O ( E ( ~ + ~ ) / ~ ) )  is intermediate between the inner 
boundary layer and the free stream. Here there is a weak deceleration and strong 
heating of the outer flow due to viscous forces. Bush (1966) demonstrated that 
an analogous transition layer also exists in the strong-interaction regime 
(2  = M&++"/R +m). The difference with our study is that Bush's solution was matched 
with the entropy layer and not with the free stream. The transition layer also exists 
in the weak-interaction regime 2 = o(1) (Bush & Cross 1967). Thus, the transition 
layer originates just from the beginning of the strong-interaction region. Therefore 
it may be possible to transfer the results of the stability theory for the transition 
layer to the moderate- and strong-interaction regimes (as done by Blackaby et al. 
1990, 1993). 

I n  the transition layer r , ~ ~  = 7 - Co ~ ( l - ~ ) / ~  = 0 (11, 

f = ?It + E Y [ f t ( 7 t )  + o(~-Vl,  
T =  T,(T/,)+O(e-fl'*z), v = ( I+o) /2a+$( l -w) ,  

O < r , < C O .  

The temperature equation may be considered separately : 

The asymptotic expansion of the solution of (2.5) as yt+O is 

q = C,r;"(l +C&+ ...), (2.6) 

where C, is an arbitrary constant which must be chosen so that the condition 
T,(co) = 1 is valid. 

It is easy to obtain the numerical solution of (2.5) since the boundary-value 
problem for 7; allows the group transformation. Denote as %(vt) the solution of the 
Cauchy problem for (2.5) with the initial values from (2.6) and (7, = 6,. Then if 
p(qt) + pm as yt +CO the solution of the boundary-value problem is 
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The function fl  satisfies the linear equation 
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($;/Ti-”)’ + ytf; = 0, 

f : ( c o )  = 0, f ;  = A,(Al+ l )C ,y ;A~~2  ... as q t + O .  

is known the profile of the velocity defect is When the profile of 

fl(llt) = - Cl ut(llt) 

ut = (A,  + 1)  1; c-”(y)  e-v2/2 (1: t (Z ‘ -” ( t )  - 1 )  dt) dy. 

The relation between the coordinates y and yt in the transition layer is 

Thus if yt + 0, then yt + - co , 

= C,( - yt)k2( 1 + O( ( - yt)-B/(A2-1))), 

u, = C,( - y,)”( 1 + O( ( - yt)-P/(A2-1))), 

where 

(2.8) 

1 1 - W  2 
k ,  = - 

0- f + w  l+W A,- 1 
k ,  = -+- , 

Now we state conditions for when the generalized inflexion point is in the 
transition layer. According to the stability theory this point defines the position of 
the critical layer for the inflexional neutral modes family (Mack 1969). The following 
equation determines the point : 

Taking into account (2.7), (2.10) is rewritten in the layer T~ = O(1): 

Thefunct ionf~>OatO<yt<co;Fs=y11,2+0(1)asyt+co,  and 

Consequently if 0 < w < 1,  (T > 4, the function Ps(yt)  changes sign at yt = O(1). 
All the calculations presented in this paper have been performed for helium (y  = 5, 
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Tf 
FIGURE 1. The dependence of the coefficient C, on the temperature factor 

determines the intensity of the velocity defect in the transition layer : U(y) 
Tp = TWIT,. C, 
= 1-€”C1Ut(Yt). 
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FIGURE 2. The coefficients C,, and -G,  in the expansions (2.3) as functions 

of the temperature factor. 

= C, w = 0.647). Figure 1 presents the relation between C, and the temperature 
factor T f  = T,/T,, where T, is the adiabatic wall temperature. The value of C, defines 
the intensity of the velocity defect in the transition layer. This is the only 
information from the boundary layer entering the leading-order approximation for 
the transition layer. The wall cooling leads to a sharp growth of the velocity defect 
near the generalized inflexion point, C, rapidly increases, and perhaps tends to 
infinity (an asymptotic analysis of the limit T,+O was not carried out). Such 
behaviour is inconsistent with the assumptions made in the problem involved. 
Therefore the limit of low temperature factor requires special investigation. Figure 
2 shows C, and -C, as functions of T f .  These values enter the higher-order terms of 
the profile expansions in the transition layer. Their increase a t  low T f  can cause a 
large contribution from higher terms and destroy the first-order approximation. 

In figure 3 the profiles of temperature T,(y,), velocity ut(yt) and their second 
derivatives q ‘ y t ) ,  u;(y,) are shown. The dashed line denotes the generalized inflexion 
point position yts = 0.684. The temperature a t  this point for helium T,(y,,) z 4.5. The 
second derivatives have maxima in the transition layer and tend to zero as yt --f & co . 
The transition layer considered with the boundary-layer thickness scale resulted in 
a discontinuity of the second derivatives. As yb --f ybm, -+ + cc and f[ +co ; and for 
yb > ybm, T;: = 0 andf i  = 0. 
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FIGURE 3. The universal profiles of the temperature T,(y,) and the velocity defect u,(y,) and their 
second derivatives in the transition layer. The second derivatives clearly demonstrate that the 
transition layer has its own lengthscale. The dashed line shows the position of the generalized 
inflexion point yu = 0.684, T,(y,) = 4.5 

3. The linear stability problem theory in the local-parallel approximation 
Most of the numerical results on boundary-layer stability a t  moderate and high 

Mach numbers were obtained for a non-interactive boundary layer in the local- 
parallel approximation. Here the most common notation, as stated by Mack (1969), 
is used. Velocity, temperature, density, pressure and viscosity coefficients are made 
dimensionless by their values in the free stream, and length by L,. In the local- 
parallel approximation we have a system of linear partial differential equations for 
small perturbations of the streamwise, normal and spanwise components of velocity 
(u’, w’, w’), pressure p’, density p‘ and temperature T’. These equations contain the 
local profiles of streamwise U(y) and spanwise W(y) velocity and temperature T ( y ) .  
The complex amplitude functions of the disturbances are defined by 

(u’, d, w’, p’, p’, T) = (f, a$, h, n, T ,  0) exp [i(ax + P z  - act)]. 

The following transformation is used : 

$ = arctanP/a, 

ti = U+ Wtan$, 

2 = xcos$++xin$, Z =  -xsin$+zcos$, 

f= f+htan$ ,  = h-ftan$, 6 = 9, ii = T ,  

F =  r ,  6 =  0, i @ = ~ , c o s ~ ,  fi = ~ c o s $ ,  

di = a/cos$k, c“=  c, f =  tCOS$,  ux+pz-act = &Z+&Zf. 

JV = W -  Utan @, 

Thus we have a system of ordinary differential equations (see Mack 1969), which may 
be reduced to a compact form, simplifying its analysis. 

Denote 
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We define new differential operators which act on the left-hand sides of the functions : 

Using these definitions we rewrite equations in the form 

- P I  1 ~ $ f =  -P + i - 4 -- [i(iO)' - ~~(pud"+,u'qJ)l, 
T ER 

I y-1 T -  
L,e = ---(O-~)ii+i-~+B, 

Y T 

Here h is the bulk viscosity, s" = e" d,u/dT, and primes denote differentiation. This form 
also proved to be convenient for calculations using spectral methods. 

To consider subsonic or outgoing and amplified supersonic waves we should use 
decay conditions as y+oo (Mack 1969): 

f:$iT,h",ii,8+0. (3.2) 

At y = 0 the boundary conditions are 
_ * _ *  

(3.3) f =  4 = h = = 0. 

For the temporal problem E and $ are parameters. Eigenvalues E and corresponding 
eigenfunctions which satisfying the system of equations (3.1) and the boundary 
conditions (3.2), (3.3) are to be obtained. 

In  the limit a +a, equations of inviscid stability theory will be obtained. The 
problem can be formulated as 

n'(0) = n(m)  = 0. I 
The other functions can be expressed using 5: 

J 

(3.4) 

(3-5)  
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The profiles for an undisturbed flow in the boundary layer are 
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and in the transition layer 

I o=  1+.”X(yt) = l-e”C,u,(y,), 

(3.7) 

4. Vorticity mode; inviscid analysis 
It was Mack (1969) who noticed the irregular parts in the &(Ma) dependence for the 

inflexional neutral modes. While the general tendency was a decrease of d when M ,  
increases, t h e  non-typical parts showed the inverse (two of the non-typical parts 
exist for the first mode and one for every subsequent mode). Mack noticed that at, 
large values of Mach number the end of the non-typical part for the mode number 
n approaches the beginning of the non-typical part for the mode number n+ 1. Thus, 
the non-typical parts form a continuous curve a t  M B 1 almost everywhere. The 
important observation was made that an eigenfunction for (&,Ma) corresponding to 
the non-typical part differed from one belonging to the typical (h,M,) part. An 
eigenfunction ii(y) from the non-typical part has its largest extremum in the 
generalized inflexion point and small amplitude in the inner part of the boundary 
layer. For all other (&,M,) values the eigenfunction has the largest extremum in the 
inner layer, and rapidly decays near the outer edge of the boundary layer. All these 
facts indicate that a special mode exists a t  M ,  % I. 

An asymptotic theory for o = 1, w = 1 was constructed by Smith & Brown (1990). 
The theory describes the near-linking of the non-typical parts at M,+m and the 
formation of a continuous neutral line almost everywhere. The mode corresponding 
to this line was called the ‘vorticity mode’. Lees (1947) used this term for the 
inflexional mode at small values of M ,  when there are no other modes. The nature of 
the neutral vorticity mode is the same as for the neutral mode in an incompressible 
fluid with the presence of an inflexional point. Therefore, we believe that 
‘hydrodynamic mode’ would be a more aFpropriate designation. Smith & Brown 
(1990) showed that the perturbations of the vorticity mode are localized in the 
neighbourhood of the outer edge of boundary layer, the transition layer in our paper. 

In order to apply the term ‘vorticity mode ’ to the whole range of the M ,  values, 
Smith & Brown proposed that all the parts of &(Ma) dependence where dd/dM, > 0 
belong to the vorticity mode. However, it is shown below that there are values of 
and w for which this definition is not satisfactory. Since the vorticity mode is of 
importance in hypersonic stability theory, we will give a new definition which is more 
suitable to the essence of the phenomenon. 

We can assume that the function 77(y) is real for the neutral mode, c“ = Es = D(ys), 
where ys is the coordinate of the generalized inflexion point. The function lii(y)l has a t  
least one maximum in the interval 0 < y < CO. The conditions for a maximum in 
a regular point are 77’ = 0 and ii“ < 0. Also, a maximum in the singular point is 
possible. Therefore, we may conclude from equation (3.4) that only two kinds of 
maxima can exist : 
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(i) the maxima in the region where 

M2(U-ES)/T > 1; 

(ii) the maximum a t  the generalized inflexion point where the general form of 
solution of (3.4) is 

where x = y -  y,; and a ,  b are arbitrary constants. 
Maxima of kind (i) are related to acoustic oscillations in the region where the wave 

speed is supersonic with respect to the undisturbed flow. These oscillations are 
impossible a t  small values ofM, (M,  < 2 in Mack 1969). The maximum of kind (ii) is 
connected with the vorticity motion and can exist a t  any value ofM, in the presence 
of the generalized inflexion point. 

The neutral mode for which the largest maximum of the function 177(y)l is in the 
critical layer a t  y = ys  will be called the neutral vorticity mode. In  the other case, the 
mode will be called the neutral acoustic mode. 

This definition leads to  a natural generalization for amplified and damped modes. 
Let us assume that the function (711 has its largest maximum at a certain point. If 
liil' = 0 a t  this point we then obtain from (3.4) that 

i i (y)  = q i  - ~ ~ ~ ~ 2 + 0 ( ~ 4 ) ) + b ( X 3 + 0 ( ~ 4 ) ) ;  

(jy' = W I  +&I I V '  

At the maximum, the value ii;/iii = - 77i/ii, does not depend on the normalization 
of 77. The sum F1+F2 < 0 has the function of 'returning force' which defines the 
maximum. The function Fl is related to the acoustics and F, is related to the 
vorticity. The kind of mode is defined depending on the contribution of these two 
factors to  the 'returning force': if Fl > 0 at the point of the largest maximum of 1771 
the mode will be called a vorticity mode ; if F2 > 0 i t  will be called an acoustic mode. 
When Fl < 0 and F, < 0, the mode will be called a vorticity mode if IF,I > 1Yl1, and an 
acoustic mode otherwise. 

I n  this way, the definitions introduced reflect the physical mechanism which 
causes the most intensive pressure pulsations. This definition should be in a good 
agreement with the essence of the phenomenon in distinctive cases ; however, i t  could 
be too arbitrary in the marginal ones. 

We note an important consequence. If Zi < 1 and the largest maximum of 1771 is in 
the subsonic region (@(o-Er)z/Z' < 1) then the mode is a vorticity mode. 

To investigate the asymptotic form of the inviscid vorticity mode as €-to,  the 
local-parallel approximation and non-interactive boundary-layer base profiles are 
quite justified, because for every large H ,  we can choose R so large that all 
non-parallel and interaction effects are negligible. I n  the transition layer ii = 
7rt(qt) + ..., c" = 1 -cEYC1ct, ct = O(1).  If we substitute the transitinn layer profiles (3.7) 
into (3.4) and take the limit e+O, (&,ct,$) = O(1), we have 

The supposition in this limit is naturally the following : 
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FIGURE 4. The neutral inflexional-mode curves a t  finite Mach numbers, T, = 1. The asymptotic 

neutral vorticity-mode wavenumber d = 0.1603 is shown as a dashed line. 

The power 2v- 1 = l/g+u((l/cr)-l) > 0,  and the condition (4.2) is always correct 
at the limit e+O. We note that in the neighbourhood of the critical layer it should 
be correct even at moderate values ofMm. 

The two linearly independent solutions of (4.1) as yt + + co, yt + + 00 have the form 

nt(l, 2) = exp ( f 1/2dyt)  + , . , = exp ( f dy,) + . . , . 
At qt + 0, yt + - co the asymptotic expansions of the two linearly independent 

solutions of (4.1) are 

= -- exp(_+dyt)+ .... (4.3) ; 
The method of obtaining (4.3) is given in Appendix B. 

We discard the growing solution and obtain the boundary conditions for (4.1) : 

nt+O as y,++oo; nt+O as y p 0 .  (4.4) 

It is necessary to find for any E the values of ct for which there is a non-zero solution 
of (4.1) with the uniform boundary conditions (4.4). If the solution is found, we can 
use (3.5) to obtain expressions for the other functions. Using the variable yt the main 
terms of their expansions in the transition layer are given as 

(4.5) 

$4, ht = 1- 
* Ct-ut u‘ . J  nt + iu’ q5 T 

t t ,  ~ , = i -  
Ct -ut ft =-  Ct-Ut 

It is clear that functions cpt, f t ,  O,, h, also decay exponentially as yt + f 00. 

Figure 4 presents the &(Ma) curves for the inflexional modes (Er = o(ys)), obtained 
from the numerical solution of (3.4) for helium with T f  = 1.  The main difference from 
the cases investigation by Mack and Smith & Brown is that dd/dM, < 0 on the non- 
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FIGURE 5.  The real and imaginary parts of the wave speed as a function of oi 
for the solution of (4.1). 
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typical parts. The edges of the non-typical parts rapidly draw together and form a 
straight line C5 = const. rather than a growing curve. The dashed line indicates the 
value d = 0.1603 obtained from the numerical solution of (4.1) with boundary 
conditions (4.4) for the neutral disturbances with ctr = ut(yts) - the neutral vorticity 
mode at M ,  +a. We think that the main cause of the poor agreement at moderately 
high Mach numbers is the unsatisfactory precision of the asymptotic profiles in the 
transition layer. The main approximation for the profiles only has a high precision 
at high Mach numbers, especially for the temperature profiles. 

Numerical investigations of (4.1) for an amplified mode were also carried out. The 
functions ctr(6i), -cti(Z) are presented in figure 5. Infinite growth is observed as 
6i + 0 : ctr - cti N Z k l i ( k z f l ) ,  and the critical layer moves down in the region where 
large values of temperature and velocity defect occur. This behaviour may be called 
a ‘long-wave catastrophe’. A full investigation of the stability requires the analysis 
of (3.4) a t  the limit Z+O. This limit contains new effects: the influence of the 
perturbations in the  boundary layer at d - d1+w)f2 and compressibility effects in the 
outer flow a t  ctr - l /ev-1~2. An analysis of the long-wave limit is presented in a 
companion paper, Grubin & Trigub (1 993). 

However, it  should be noted that the maximum increment max ( - C, &“‘ti d )  is 
observed only for the vorticity mode at  6i = O(1). It is shown in the figure 6. 

When the wall is cooling, C, increases rapidly causing destabilization of the flow. 
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5. The viscous counterpart of the inviscid vorticity mode as 1Wm +a. 
If we substitute the profiles of the undisturbed flow in the transition layer (3 .7 )  and 

the function representations (4.5) into (3.1), i t  may be shown that the dissipative 
terms have the same order as the inviscid ones at the limit e+O, (E.c,, $) = O(1) if 
the condition R* = R cos $ C, e” = O( 1 )  is valid. 

It is important to note here that we have found that the viscosity is not the first 
factor which should be taken into consideration as R diminishes. The first, for the no- 
interaction base flow, is a non-parallel effect induced by the transition-layer 
curvature. The curvature produces a centrifugal force field which influences the 
density fluctuations in the transition layer. The effect must be taken into account a t  
Iz* = O ( E - ~ ’ ~ ~ ~ ) ,  and work on this is underway. 

However, in this section the viscous counterpart of the inviscid vorticity mode is 
studied in the local-parallel approximation in the limit R* = O(1), e+O. There are 
marly reasons to  investigate this limit. The purpose of this study was to understand 
how viscosity changes the structure of the vorticity mode and to prove the existence 
of the mode in the presence of viscosity. Most of the numerical results at high Mach 
numbers were obtained using the local-parallel approximation. The ‘high Mach 
number’ is, in practice M ,  z 7-20. We have made calculations up to R* = lo6, so at  
least a part of the results is correct a t  high Mach numbers. The results help to 
understand and explain some regularities found in previous numerical calculations. 

Although the viscous vorticity-mode analysis in the local-parallel approximation 
is a correct asymptotic result, it does not hold for the boundary layer on the flat 
plate. The wall may be made slightly concave to eliminate the upper boundary edge 
curvature. Therefore the viscosity, curvature and interaction effects may be 
considered as different physical factors. 

I n  the limit R* = O( l ) ,  e+O we obtain the system of equations 

i.e. the terms (0-E)fi and 8 are of O ( C O S ~ @ C ~ E ~ ” ~ )  
discarded in (3.1).  The equation for h, stands alone: 

as E + 0 and may be totally 

The definition of A-(p) corresponds to that previously stated: 

Equations (5.1) can be written as a system of six ordinary differential equations of 
the first order. The system has six linearly independent solutions. An analysis of the 
asymptotic structure of these six solutions as yt+) co is given in Appendix B for 



Asymptotic theory of hypersonic boundary-layer stability 375 

y-f + 00 and y + -  00. It is shown that in both cases all the functions exponentially 
grow in three solutions and decay in the others. The requirement to discard the 
exponentially growing functions gives the boundary conditions for (5.1) : 

The functions &,f, can be eliminated from (5.1). We have as a result a system of 
ft,$t,8,+0 as y t + k m .  (5 .2 )  

(5.3) 

Loot = i ( T m  $t. 

Evidently, (5.3) can be reduced to a single equation for 8,. In this case, however, 
the equation contains both ct and c:, which is not suitable when the spectral methods 
are used in calculations. 

Let us consider the fundamental features of the approximation constructed. 
(i) The Mach number in the coordinate system moving with the wave speed 

tends to zero in the transition layer. The function iT is discarded from the equation 
of state for disturbances ii = r”T+ B”/T, i.e. the total state equation is isobaric, the 
density perturbation is defined by the temperature disturbance. Because of this, the 
divergence of the velocity perturbation d, is produced by a dissipative term (the last 
equation in (5.1)). Therefore, the divergence becomes zero (as for incompressible 
fluid) in the inviscid approach. If we remove the temperature fluctuations 8, in the 
first equation of (5.3) and state T = 1 ,  then the Om-Sommerfeld equation will be 
obtained. Also, it should be noted that after eliminating pt the problem does not 
contain the bulk viscosity h a t  all. 

(ii) When E is determined, the eigenvalues C, and eigenfunctions q5t, St depend on 
three parameters only : (T, w and R” = R cos @C1 E”.  The flow perturbations are 
localized in the thin region between the boundary layer and the free stream. The 
problem receives information from the boundary layer only indirectly from the 
constant C,. From this we believe that the same problem statement holds for the 
vorticity mode in the hypersonic mixing layer, wake, jet - whenever there is an edge 
between the hypersonic free stream and the region of viscous gas with high enthalpy. 
This assumption was proved to a certain extent. The analyses of the inviscid 
instability in the hypersonic mixing layer (Balsa & Goldstein 1990) and in the 
boundary layer on a flat plate (Smith & Brown 1990) bring out the same problem 
statement. 

The problem (5.3), (5.2) was investigated with the aid of a spectral method 
primarily developed for reliable and precise solving of the complete stability problem 
(3.1), (3.2), (3.3) a t  moderate and high Mach numbers. The method and its testing are 
described in detail in Grubin, Simakin & Trigub (1992). Some modifications are made 
to the method to solve (5.2), (5.3). 

The variable 7, is used in numerical calculations. The region T~(E,R*)  < T~ < 
r b ( E ,  R”) is transformed by 



376 S.  E .  Grubin and 8. N .  Trigub 

0.151 

0.03 

0 1 2 3 4 5  

log (R*) 
FIGURE 7 .  The universal upper branch of the neutral curves and the line of maximum amplification 
rate for the numerical solution of (5 .2 ) ,  (5.3). The inviscid vorticity-mode limit obtained from (4.1) 
is shown a8 a dashed line. 

in the interval - 1 < z < 1.  The lower and upper points qa, rb are controlled to ensure 
strong decay of the functions q5,6 at the boundaries in accordance with the reaults of 
Appendix B. The functions are represented as 

Q 

= c d n  T n ( z ) ,  
n=O 

and similarly for 19, where Tn are the Chebyshev polynomials. The equations (5.3) are 
approximated at  the collocation points xi  = cos (nil&), i = 1 , .  . . Q- 1 and the 
boundary conditions (5.2) at points z = - 1 , i .  Parameter k may be used to move 
points in the ( T ~ ,  qb)  interval. The derivatives in the operators are obtained from 

where DZ,, = Ya(z,). On using these procedures we obtain the eigenvalue problem for 
the system of linear equations 

ctAgjXj = BijX,, j = 0, ... 2Q+ 1 ,  i = 2 ,  ... 2Q-  1 ,  
Q 2Q+l 

C ( -  l)jX, = 0 ,  C ( -  1)Cq = 0,  
j = O  j=Q+l 

Q Z Q + 1  

1=0 j=Q+I 
xxj=O, c xj=O, 

where X j  = q51 and XQ+j+l = ej, j = 0 , .  .. Q .  
The spectral method was easy realized with the use of the spectral-method 

programs from the TURLEN Library. Different numbers of points Q were tested up to 
Q = 100. The final results are obtained at  Q = 60. 

It was proved that as B + 0, ctr, - cti tend to infinity but the maximum increment 
is at E = O(1). As R*+O the instability region rapidly becomes thin; however, the 
critical value R* and the lower branch of the neutral curve were not found. The 
instability region apparently exists at  the limit R* + 0. These results require 
analytical verification, i.e. the limit d = 0, R*+O must be considered. 

The upper branch of the neutral curve and the line of maximum rate of 
amplification are plotted in figure 7. The dashed line denotes the value of E for the 
neutral mode obtained from the solution of (4.1). The maximum rate of amplification 
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FIGURE 8. The universal upper branch of the neutral curves (a) and the neutral curve from the 
numerical solution of the complete system (3.1), (3 .2 ) ,  (3.3) at M ,  = 20, = 1, C = 0 ( b ) .  

increases with an increase of R”. It is known from the calculation of the Lees-Lin 
equations for the boundary layer at M 2 4 that a t  fixed values of Mach and Reynolds 
numbers the maximum amplification rate decreases with an increase of the wave 
angle y9 and increases with wall cooling. The theory produced explains these facts 
and states the similarity rules for the changes mentioned above. 

Figure 8 shows a comparison of the universal neutral curve obtained from the 
Lees-Lin equations for M ,  = 20, @ = 0,  Tf = 1 .  As already stated, the difference 
appears at small values of &. 

We wish to thank Dr I. N. Simakin for his consultation on the numerical methods. 
We are grateful to Dr S. Cowley for his comments and suggestions on this paper. We 
would also like to thank INTECO for support and assistance during the preparing of 
the paper for publishing. 

Appendix A 
Let Tb = C2t?2(l + q ( [ ) ) , f b  = c+C,[-’l(l + r ( [ ) ) ,  then 

k2r”. 1 [ f g  = C , h , ( A , + l ) ~ - ~ ~ - l ( l + s ( ~ ) ) ,  s = r-- cr’+ 
A, + 1 A,(h, + 1 )  

From (2.2) we have equations for the functions q,  s 

1 - 3 ~  1 f o  

l--w l - W  
624.‘‘ + ~ tq’ - 2 (-1 q = R,, 65’ = R,, 

where 

R, = (1  - + + 2 L - {  w2 l + W  
(1 + q p -  1 - (I  - w )  q 

l + q  ( l - w y  

&’ - A, ( 1 + s )  [ ( 1 + C, c?-’( 1 + r )  ) ( 1 + q)lPw - 11. 
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Series presentations of q, r ,  5 are 
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00 m m 

q = C qict, r = C r i p ,  5 = C s i e ,  
i-1 i=l i=l 

The operator on the left-hand side of the first equation of (A 1)  possesses the two- 
power eigensolution q = c p  and q = [$: 

of which only the first satisfies the condition q +- 0 as &-a. Taking into account the 
existence of the eigensolution we can define the set of powers vi : 

{v$} = {(p, 2/3,3/3, . . .) ; ( -Al  - 1, -A1 - 1 +p, -A1- 1 + 2p, . . . ,) ; 
( - 2 4  - 2 +A,, - 2 4  - 2 +A, +p, - 2 4  - 2 +A, + 2p, . . .) ; 
(-2(A1-1), ...); ...}. 

When w and cr are determined this set must be put in order so that vi+l < vi. The 
right-hand sides of (A 2) are also presented as the series: 

j-1 

The coefficient q1 = C ,  is the free parameter in the expansions; the others are defined 
by the relations 

q~=R~~/[(v~-p)(v~-~)l) j =  2,..*, 

si = RZj/vj, j = 1,  ..., 

so that for every j the right-hand sides depend on the qk, sk, rk, lc < j only, 

computation on a computer. 
The expressions for the coefficients R,,R, were obtained by using symbolic 

Appendix B 
We wish to investigate the behaviour of the solution of (5.1) as y++ co. 
When yt + + 00 a particular case of the analysis arises, which was investigated by 

Mack (1969). The derivatives Ti) ui rapidly decay and at  the leading-order as yt+ 
+ 00 a system with constant coefficients is obtained. The solution can be written as 

(ft) 4t3 mt, 6,) = e"""f, $4 n,@, (B 1) 

where f ,  4, n, 6 , Q  are constants. 

them contains exponentially growing and decaying functions as yt -+ + 00 : 

(i) vorticity waves Q2 = dia+idic,R*: 

We can divide six linear independent solutions into three groups so that each of 

$ + O ,  f=+ iQ$ ,  6 = 0 ,  r=O; 
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(ii) entropy waves Q2 = di2+icdctR*: 

(iii) potential waves SZz = E 2 :  

# + O ,  f=iS2#, 8 = 0 ,  n=-iQctq5. (B 4) 

As yt --f - co power-law growth of the profiles u,, is observed and coefficients in 
(5.1) are the power functions. In this case, finding the solution is more complex. 
Solutions of (5.1) should be sought, as yt+- 00, in the form 

where yto is some constant and the functions f,  #, 7 ~ ,  8, SZ are expanded in power series. 
We substitute (B 5) into (5.1) and use the representation (2.9) of the undisturbed 
profiles ut, T, as yt-+-w. It is proved that the structures of the six linearly 
independent solutions as yt -+ - co are similar to those obtained as yt + + 00. There 
are three classes of solution, each containing exponentially growing and decaying 
functions. The same definitions as mentioned above are used: 

(i) vorticity waves O2 = d2 + i(di;R*/pT,) (c, -ut) : 

I f = iQ$( 1 + O(E-')), 

(ii) entropy waves SZ2 = E2 + (icdzR*/,uT,) (ct - ut) 

The main approximation, obtained in this way, can be verified by substituting 
(B 5) in (5.1) and evaluating the remaining terms. 

13 ELM 2% 
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The higher-order terms (ct $ ut) are preserved in the main approximation. This 
leads to a more general and useful form of representat'ion. Expansions obtained can 
be considered as a generalization of presentation of the solution in the uniform free 
stream (B 1 )  in the case of external flow with power profiles ut, q. The expansions 
(B 2) ,  (B 3),  (B 4) may be obtained from (B 6) ,  (B 7) ,  (B 8) as a particular case if we 
assume ut = 0, = 1. 
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